En biología, la mitosis (del griego mitos, hebra) es un proceso de reparto equitativo del material hereditario (ADN) característico de las células eucarióticas.[1] Normalmente concluye con la formación de dos núcleos separados (cariocinesis), seguido de la partición del citoplasma (citocinesis), para formar dos células hijas. La mitosis completa, que produce células genéticamente idénticas, es el fundamento del crecimiento, de la reparación tisular y de la reproducción asexual. La meiosis, un proceso que comparte mecanismos con la mitosis pero que no debe confundirse con ella (es otro tipo de división celular, propio de los gametos), produce células genéticamente distintas y, combinada con la fecundación, es el fundamento de la reproducción sexual y la variabilidad genética.
Introducción
La mitosis es el tipo de división celular por el cual se conservan los orgánulos y la información genética contenida en sus cromosomas, que pasa de esta manera a las células hijas resultantes de la mitosis. La mitosis es igualmente un verdadero proceso de multiplicación celular que participa en el desarrollo, el crecimiento y la regeneración del organismo. Este proceso tiene lugar por medio de una serie de operaciones sucesivas que se desarrollan de una manera continua, y que para facilitar su estudio han sido separadas en varias etapas.
Esquema que muestra de manera resumida lo que ocurre durante la mitosisEl resultado esencial de la mitosis es la continuidad de la información hereditaria de la célula madre en cada una de las dos células hijas. El genoma se compone de una determinada cantidad de genes organizados en cromosomas, hebras de ADN muy enrolladas que contienen la información genética vital para la célula y el organismo. Dado que cada célula debe contener completa la información genética propia de su especie, la célula madre debe hacer una copia de cada cromosoma antes de la mitosis, de forma que las dos células hijas reciban completa la información. Esto ocurre durante la fase S de la interfase, el período que alterna con la mitosis en el ciclo celular y en el que la célula entre otras cosas se prepara para dividirse.[2]
Tras la duplicación del ADN, cada cromosoma consistirá en dos copias idénticas de la misma hebra de ADN, llamadas cromátidas hermanas, unidas entre sí por una región del cromosoma llamada centrómero.[3] Cada cromátida hermana no se considera en esa situación un cromosoma en sí mismo, sino parte de un cromosoma que provisionalmente consta de dos cromátidas.
En animales y plantas, pero no siempre en hongos o protistas, la envoltura nuclear que separa el ADN del citoplasma se desintegra, desapareciendo la frontera que separaba el contenido nuclear del citoplasma. Los cromosomas se ordenan en el plano ecuatorial de la célula, perpendicular a un eje definido por un huso acromático. Éste es una estructura citoesquelética compleja, de forma ahusada, constituido por fibras que son filamentos de microtúbulos. Las fibras del huso dirigen el reparto de las cromátidas hermanas, una vez producida su separación, hacia los extremos del huso. Por convenio científico, a partir de este momento cada cromátida hermana sí se considera un cromosoma completo, y empezamos a hablar de cromosomas hermanos para referirnos a las estructuras idénticas que hasta ese momento llamábamos cromátidas. Como la célula se alarga, las fibras del huso “tiran” por el centrómero a los cromosomas hermanos dirigiéndolos cada uno a uno de los polos de la célula. En las mitosis más comunes, llamadas abiertas, la envoltura nuclear se deshace al principio de la mitosis y se forman dos envolturas nuevas sobre los dos grupos cromosómicos al acabar. En las mitosis cerradas, que ocurren por ejemplo en levaduras, todo el reparto ocurre dentro del núcleo, que finalmente se estrangula para formar dos núcleos separados.[4]
Se llama cariocinesis a la formación de los dos núcleos con que concluye habitualmente la mitosis. Es posible, y ocurre en ciertos casos, que el reparto mitótico se produzca sin cariocinesis (endomitosis) dando lugar a un núcleo con el material hereditario duplicado (doble número de cromosomas).
La mitosis se completa casi siempre con la llamada citocinesis o división del citoplasma. En las células animales la citocinesis se realiza por estrangulación: la célula se va estrechando por el centro hasta que al final se separa en dos. En las células de las plantas se realiza por tabicación, es decir, las células hijas “construyen” una nueva región de pared celular que dividirá la una de la otra dejando puentes de citoplasma (plasmodesmos). Al final, la célula madre se parte por la mitad, dando lugar a dos células hijas, cada una con una copia equivalente y completa del genoma original.
Cabe señalar que las células procariotas experimentan un proceso similar a la mitosis llamado fisión binaria. No se puede considerar que las células procariotas experimenten mitosis, dado que carecen de núcleo y únicamente tienen un cromosoma sin centrómero.[5]
[editar] Fases del ciclo celular
Diagrama mostrando los cambios que ocurren en los centrosomas y el núcleo de una célula en el proceso de la división mitótica. I a III, profase; IV, prometafase; V,metafase; VI y VII, anafase; VII y VIII, telofase.La división de las células eucarióticas es parte de un ciclo vital continuo, el ciclo celular, en el que se distinguen dos períodos mayores, la interfase, durante la cual se produce la duplicación del ADN, y la mitosis, durante la cual se produce el reparto idéntico del material antes duplicado. La mitosis es una fase relativamente corta en comparación con la duración de la interfase.
[editar] Interfase
Artículo principal: Interfase
La célula está ocupada en la actividad metabólica preparándose para la mitosis (las próximas cuatro fases que conducen e incluyen la división nuclear). Los cromosomas no se disciernen claramente en el núcleo, aunque una mancha oscura llamada nucleolo, puede ser visible. La célula puede contener un centrosoma con un par de centriolos (o centros de organización de microtúbulos en los vegetales) los cuales son sitios de organización para los microtúbulos.[2]
[editar] Profase
Artículo principal: Profase
Profase: Los dos centros de origen de los microtúbulos (en verde) son los centrosomas. La cromatina ha comenzado a condensarse y se observan las cromátidas (en azul). Las estructuras en color rojo son los cinetocoros. (Micrografía obtenida utilizando marcajes fluorescentes).Es la fase más larga de la mitosis. Se produce en ella la condensación del material genético (ADN, que en interfase existe en forma de cromatina), para formar unas estructuras altamente organizadas, los cromosomas. Como el material genético se ha duplicado previamente durante la fase S, los cromosomas replicados están formados por dos cromátidas, unidas a través del centrómero por moléculas de cohesinas.
Uno de los hechos más tempranos de la profase en las células animales es duplicación del centrosoma; los dos centrosomas hijos (cada uno con dos centriolos) migran entonces hacia extremos opuestos de la célula. Los centrosomas actúan como centros organizadores de microtúbulos, controlando la formación de unas estructuras fibrosas, los microtúbulos, mediante la polimerización de tubulina soluble.[6] De esta forma, el huso de una célula mitótica tiene dos polos que emanan microtúbulos.
En la profase tardía desaparece el nucléolo y se desorganiza la envoltura nuclear etc.
[editar] Prometafase
Artículo principal: Prometafase
Véase también: Cinetocoro # Sección: Anclaje de los cromosomas a los MTs del huso mitótico
Prometafase: La membrana nuclear se ha disuelto, y los microtúbulos (verde) invaden el espacio nuclear. Los microtúbulos pueden anclar cromosomas (azul) a través de los cinetocoros (rojo) o interactuar con microtúbulos emanados por el polo opuesto.La membrana nuclear se desensambla y los microtúbulos invaden el espacio nuclear. Esto se denomina mitosis abierta, y ocurre en una pequeña parte de los organismos multicelulares. Los hongos y algunos protistas, como las algas o las tricomonas, realizan una variación denominada mitosis cerrada, en la que el huso se forma dentro del núcleo o sus microtúbulos pueden penetrar a través de la membrana nuclear intacta.[7] [8]
Cada cromosoma ensambla dos cinetocoros hermanos sobre el centrómero, uno en cada cromátida. Un cinetocoro es una estructura proteica compleja a la que se anclan los microtúbulos.[9] Aunque la estructura y la función del cinetocoro no se conoce completamente, contiene varios motores moleculares, entre otros componentes.[10] Cuando un microtúbulo se ancla a un cinetocoro, los motores se activan, utilizando energía de la hidrólisis del ATP para "ascender" por el microtúbulo hacia el centrosoma de origen. Esta actividad motora, acoplada con la polimerización/despolimerización de los microtúbulos, proporcionan la fuerza de empuje necesaria para separar más adelante las dos cromátidas de los cromosomas.[10]
Cuando el huso crece hasta una longitud suficiente, los microtúbulos asociados a cinetocoros empiezan a buscar cinetocoros a los que anclarse. Otros microtúbulos no se asocian a cinetocoros, sino a otros microtúbulos originados en el centrosoma opuesto para formar el huso mitótico.[11] La prometafase se considera a veces como parte de la profase.
Metafase: Los cromosomas se encuentran alineados en la placa metafásica.[editar] Metafase
Artículo principal: Metafase
Véase también: Checkpoint de mitosis
A medida que los microtúbulos encuentran y se anclan a los cinetocoros durante la prometafase, los centrómeros de los cromosomas se congregan en la "placa metafásica" o "plano ecuatorial", una línea imaginaria que es equidistante de los dos centrosomas que se encuentran en los dos polos del huso.[11] Este alineamiento equilibrado en la línea media del huso se debe a las fuerzas iguales y opuestas que se generan por los cinetocoros hermanos. El nombre "metafase" proviene del griego μετα que significa "después."
Dado que una separación cromosómica correcta requiere que cada cinetocoro esté asociado a un conjunto de microtúbulos (que forman las fibras cinetocóricas), los cinetocoros que no están anclados generan una señal para evitar la progresión prematura hacia anafase antes de que todos los cromosomas estén correctamente anclados y alineados en la placa metafásica.
Anafase: los microtúbulos anclados a cinetocoros se acortan y los dos juegos de cromosomas se aproximan a cada uno de los centrosomas.[editar] Anafase
Artículo principal: Anafase
Cuando todos los cromosomas están correctamente anclados a los microtúbulos del huso y alineados en la placa metafásica, la célula procede a entrar en anafase (del griego ανα que significa "arriba", "contra", "atrás" o "re-").
Entonces tienen lugar dos sucesos. Primero, las proteínas que mantenían unidas ambas cromatidas hermanas (las cohesinas), son cortadas, lo que permite la separación de las cromátidas. Estas cromátidas hermanas, que ahora son cromosomas hermanos diferentes, son separados por los microtúbulos anclados a sus microtúbulos al desensamblarse, dirigiéndose hacia los centrosomas respectivos.
A continuación, los microtúbulos no asociados a cinetocoros se alargan, empujando a los centrosomas (y al conjunto de cromosomas que tienen asociados) hacia los extremos opuestos de la célula. Este movimento parece estar generado por el rápido ensamblaje de los microtúbulos.[12]
Estos dos estadios se denominan a veces anafase temprana (A) y anafase tardía (B). La anafase temprana viene definida por la separación de cromátidas hermanas, mientras que la tardía por la elongación de los microtúbulos que produce la separación de los centrosomas. Al final de la anafase, la célula ha conseguido separar dos juegos idénticos de material genético en dos grupos definidos, cada uno alrededor de un centrosoma.
Telofase: Los cromosomas decondensados están rodeados por la membrana nuclear.[editar] Telofase
Artículo principal: Telofase
La telofase (del griego τελος, que significa "finales") es la reversión de los procesos que tuvieron lugar durante profase y prometafase. Durante la telofase, los microtúbulos no unidos a cinetocoros continúan alargándose, estirando aún más la célula. Los cromosomas hermanos se encuentran cada uno asociado a uno de los polos. La membrana nuclear se reforma alrededor de ambos grupos cromosómicos, utilizando fragmentos de la membrana nuclear de la célula original. Ambos juegos de cromosomas, ahora formando dos nuevos núcleos, se descondensan de nuevo en cromatina. La cariocinesis ha terminado, pero la división celular aún no está completa.
[editar] Citocinesis
Artículo principal: Citocinesis
La citocinesis es un proceso independiente, que se inicia simultáneamente a la telofase. Técnicamente no es parte de la mitosis, sino un proceso aparte, necesario para completar la división celular. En las células animales, se genera un surco de escisión (cleavage furrow) que contiene un anillo contráctil de actina en el lugar donde estuvo la placa metafásica, estrangulando el citoplasma y aislando así los dos nuevos núcleos en dos células hijas.[13] Tanto en células animales como en plantas, la división celular está dirigida por vesículas derivadas del aparato de Golgi, que se mueven a lo largo de los microtúbulos hasta la zona ecuatorial de la célula.[14] En plantas esta estructura coalesce en una placa celular en el centro del fragmoplasto y se desarrolla generando una pared celular que separa los dos núcleos. El fragmoplasto es una estructura de microtúbulos típica de plantas superiores, mientras que algunas algas utilizan un vector de microtúbulos denominado ficoplasto durante la citocinesis.[15] Al final del proceso, cada célula hija tiene una copia completa del genoma de la célula original. El final de la citocinesis marca el final de la fase M.
Meiosis
En biología, meiosis (del griego μείωσις, disminución) es una de las formas de reproducción celular. Es un proceso divisional celular, en el cual una célula diploide (2n) experimentará dos divisiones celulares sucesivas, con la capacidad de generar cuatro células haploides (n).
Este proceso se lleva a cabo en dos divisiones nucleares y citoplasmáticas, llamadas primera y segunda división meiótica o simplemente Meiosis I y Meiosis II. Ambas comprenden Profase, Metafase, Anafase y Telofase.
Durante la meiosis I, los miembros de cada par homólogo de cromosomas se unen primero y luego se separan y se distribuyen en diferentes núcleos. En la Meiosis II, las cromátidas hermanas que forman cada cromosoma se separan y se distribuyen en los núcleos de las células hijas. Entre estas dos etapas sucesivas no existe la etapa S (duplicación del ADN).
La meiosis no siempre es un proceso preciso; a veces los errores en la meiosis son responsables de las principales anomalías cromosómicas. La meiosis consigue mantener constante el número de cromosomas de las células de la especie para mantener la información genética.
[editar] Historia de la meiosis
La meiosis fue descubierta y descrita por primera vez en los huevos del erizo de mar en 1876, por el conocido biólogo alemán Oscar Hertwig (1849-1922).
Fue descrita otra vez en 1883, en el nivel de cromosomas, por el zoólogo belga Edouard Van Beneden (1846-1910) en los huevos de los gusanos parásitos Ascaris. En 1887, observó que en la primera división celular que llevaba a la formación de un huevo, los cromosomas no se dividían en dos longitudinalmente como en la división celular asexual, sino que cada par de cromosomas se separaba para formar dos células, cada una de las cuales presentaba tan sólo la mitad del número usual de cromosomas. Posteriormente, ambas células se dividían de nuevo según el proceso asexual ordinario. Van Beneden denominó a este proceso “meiosis”.
La significación de la meiosis para la reproducción y la herencia, sin embargo, fue descrita solamente en 1890 por el biólogo alemán August Weismann (1834-1914), quien observó que dos divisiones celulares eran necesarias transformar una célula diploide en cuatro células haploides si el número de cromosomas tenía que ser mantenido. En 1911, el genetista estadounidense Thomas Hunt Morgan (1866-1945) observó el entrecruzamiento en la meiosis de la mosca de la fruta, proveyendo la primera interpretación segura y verdadera sobre la meiosis.
[editar] Meiosis y ciclo vital
La reproducción sexual se caracteriza por la fusión de dos células sexuales haploides para formar un cigoto diploide, por lo que se deduce que, en un ciclo vital sexual, debe ocurrir la meiosis antes de que los gametos puedan reproducirse.
En animales y otros pocos organismos, la meiosis precede de manera inmediata a la formación de gametos. Las células del cuerpo somáticas de un organismo individual se multiplican por mitosis y son diploides; las únicas células haploides son los gametos. Estos se forman cuando algunas células de la línea germinativa experimentan la meiosis. La formación de gametos recibe el nombre de gametogénesis. La gametogénesis masculina denominada espermatogénesis da por resultado la formación de cuatro espermatozoides haploides por cada célula que entra en la meiosis.
En contraste, la gametogénesis femenina llamada ovogénesis genera un solo óvulo por cada célula que entra en la meiosis por un proceso que asigna virtualmente todo el citoplasma a uno solo de dos núcleos en cada división meiótica. Al final de la primera división meiótica se retiene un núcleo; el otro, llamado primer cuerpo polar, se excluye de la célula y por último degenera. De modo general, al final de la segunda división un núcleo se convierte en el segundo cuerpo polar y el otro núcleo sobrevive. De esta forma, un núcleo haploide pasa a ser el receptor de la mayor parte del citoplasma y los nutrimentos acumulados de la célula meiótica original.
Sin embargo, aunque la meiosis se realiza en algún punto de los ciclos vitales sexuales, no siempre precede directamente a la formación de gametos. Muchos eucariontes sencillos (incluso algunos hongos y algas) permanecen haploides (sus células se dividen por mitosis) la mayor parte de su vida, y los individuos pueden ser unicelulares o pluricelulares.
Dos gametos haploides (producidos por mitosis) se fusionan para formar un cigoto diploide, el cual experimenta la meiosis para volver al estado haploide.
Los ciclos vitales más complejos se encuentran en vegetales y algunas algas. Estos ciclos vitales, que se caracterizan por alternancia de generaciones, consisten en una etapa diploide multicelular, denominada generación esporófita, y una etapa haploide multicelular, a la que se llama generación gametófita. Las células esporofitas diploides experimentan la meiosis para formar esporas haploides, cada una de las cuales se divide en forma mitótica para producir un gametofito haploide multicelular. Los gametofitos producen gametos por mitosis. Los gametos femeninos y masculinos (óvulo y espermatozoides) se fusionan entonces para formar un cigoto diploide, el cual se divide de manera mitótica para producir un esporofito diploide multicelular.
[editar] Proceso celular
Visión general de la meiosis. En la interfase se duplica el material genético, y se produce el fenómeno de la recombinación (representado por cromosomas rojos y azules). En meiosis I los cromosomas homólogos se reparten en dos células hijas. En meiosis II, al igual que en una mitosis, cada cromátida migra hacia un polo. El resultado son 4 células hijas haploides (n).Los pasos preparatorios que conducen a la meiosis son idénticos en patrón y nombre a la interfase del ciclo mitótico de la célula. La interfase se divide en tres fases:
Fase G1: caracterizada por el aumento de tamaño de la célula debido a la fabricación acelerada de organelos, proteínas y otras materias celulares.
Fase S (síntesis): se replica el material genético, es decir, el ADN se replica dando origen a dos cadenas nuevas, unidas por el centrómero. Los cromosomas, que hasta el momento tenían una sola cromátida, ahora tienen dos. Se replica el 98% del ADN, el 2% restante queda sin replicar.
Fase G2: la célula continúa aumentando su biomasa.
La interfase es seguida inmediatamente por la meiosis I y II. La meiosis I consiste en la segregación de cada uno de los cromosomas homólogos, dividiendo posteriormente la célula diploide en dos células diploides pero con la mitad de cromosomas. La meiosis II consiste en desemparejar cada una de las cromátidas del cromosoma, que se segregarán una a cada polo, con lo que tras una división se producen cuatro células haploides. Meiosis I y II están divididas en profase, metafase, anafase y telofase, similares en propósito a sus subfases análogas en el ciclo mitótico de la célula. Por lo tanto, la meiosis abarca la interfase (G1, S, G2), la meiosis I (profase I, metafase I, anafase I, telofase I), y la meiosis II (profase II, metafase II, anafase II, telofase II).
[editar] Meiosis I
[editar] Profase I
La profase I de la primera división meiótica es la etapa más compleja del proceso y a su vez se divide en 5 subetapas, que son:
Leptoteno
La primera etapa de Profase I es la etapa del leptoteno, durante la cual los cromosomas individuales comienzan a condensar en filamentos largos dentro del núcleo. Cada cromosoma tiene un elemento axial, un armazón proteico que lo recorre a lo largo, y por el cual se ancla a la envuelta nuclear. A lo largo de los cromosomas van apareciendo unos pequeños engrosamientos denominados cromómeros.
Zigoteno
Los cromosomas homólogos comienzan a acercarse hasta quedar apareados en toda su longitud. Esto se conoce como sinapsis (unión) y el complejo resultante se conoce como bivalente o tétrada (nombre que prefieren los citogenetistas), donde los cromosomas homólogos (paterno y materno) se aparean, asociándose así cromátidas homólogas. Producto de la sinapsis, se forma una estructura observable solo con el microscopio electrónico, llamada complejo sinaptonémico, unas estructuras, generalmente esféricas, aunque en algunas especies pueden ser alargadas.
La disposición de los cromómeros a lo largo del cromosoma parece estar determinado genéticamente. Tal es así que incluso se utiliza la disposición de estos cromómeros para poder distinguir cada cromosoma durante la profase I meiótica.
Además el eje proteico central pasa a formar los elementos laterales del complejo sinaptonémico, una estructura proteica con forma de escalera formada por dos elementos laterales y uno central que se van cerrando a modo de cremallera y que garantiza el perfecto apareamiento entre homólogos. En el apareamiento entre homólogos también está implicada la secuencia de genes de cada cromosoma, lo cual evita el apareamiento entre cromosomas no homólogos. Además durante el zigoteno concluye la replicación del ADN (2% restante) que recibe el nombre de zig-ADN.
Paquiteno
Una vez que los cromosomas homólogos están perfectamente apareados formando estructuras que se denominan bivalentes se produce el fenómeno de entrecruzamiento (crossing-over) en el cual las cromatidas homólogas no hermanas intercambian material genético. La recombinación genética resultante hace aumentar en gran medida la variación genética entre la descendencia de progenitores que se reproducen por vía sexual.
La recombinación genética está mediada por la aparición entre los dos homólogos de una estructura proteica de 90 nm de diámetro llamada nódulo de recombinación. En él se encuentran las enzimas que medían en el proceso de recombinación.
Durante esta fase se produce una pequeña síntesis de ADN, que probablemente está relacionada con fenómenos de reparación de ADN ligados al proceso de recombinación.
Diploteno
Los cromosomas continúan condensándose hasta que se pueden comenzar a observar las dos cromátidas de cada cromosoma. Además en este momento se pueden observar los lugares del cromosoma donde se ha producido la recombinación. Estas estructuras en forma de X reciben el nombre quiasmas. Cada quiasma se origina en un sitio de entrecruzamiento, lugar en el que anteriormente se rompieron dos cromatidas homólogas que intercambiaron material genético y se reunieron.
En este punto la meiosis puede sufrir una pausa, como ocurre en el caso de la formación de los óvulos humanos. Así, la línea germinal de los óvulos humanos sufre esta pausa hacia el séptimo mes del desarrollo embrionario y su proceso de meiosis no continuará hasta alcanzar la madurez sexual. A este estado de latencia se le denomina dictiotena.
Diacinesis
Esta etapa apenas se distingue del diploteno. Podemos observar los cromosomas algo más condensados y los quiasmas. El final de la diacinesis y por tanto de la profase I meiótica viene marcado por la rotura de la membrana nuclear. Durante toda la profase I continuó la síntesis de ARN en el núcleo. Al final de la diacinesis cesa la síntesis de ARN y desaparece el nucléolo.
[editar] Prometafase I
La membrana nuclear desaparece. Un cinetocoro se forma por cada cromosoma, no uno por cada cromátida, y los cromosomas adosados a fibras del huso comienzan a moverse. Algunas veces las tétradas son visibles al microscopio. Las cromatidas hermanas continúan estrechamente alineadas en toda su longitud, pero los cromosomas homólogos ya no lo están y su centrómeros y cinetocoros encuentran separados entre sí.
[editar] Metafase I
Los cromosomas homólogos se alinean en el plano de ecuatorial. La orientación es al azar, con cada homologo paterno en un lado. Esto quiere decir que hay un 50% de posibilidad de que las células hijas reciban el homólogo del padre o de la madre por cada cromosoma. Los microtubulos del huso de cada centríolo se unen a sus respectivos cinetocoros.
[editar] Anafase I
Los quiasmas se separan. Los microtúbulos del huso se acortan en la región del cinetocoro, con lo que se consigue remolcar los cromosomas homólogos a lados opuestos de la célula, junto con la ayuda de proteínas motoras. Ya que cada cromosoma homólogo tiene solo un cinetocoro, se forma un juego haploide (n) en cada lado. En la repartición de cromosomas homólogos, para cada par, el cromosoma materno se dirige a un polo y el paterno al contrario. Por tanto el número de cromosomas maternos y paternos que haya a cada polo varía al azar en cada meiosis. Por ejemplo, para el caso de una especie 2n = 4 puede ocurrir que un polo tenga dos cromosomas maternos y el otro los dos paternos; o bien que cada polo tenga uno materno y otro paterno.
[editar] Telofase I
Cada célula hija ahora tiene la mitad del número de cromosomas pero cada cromosoma consiste en un par de cromátidas. Los microtubulos que componen la red del huso mitótico desaparece, y una membrana nuclear nueva rodea cada sistema haploide. Los cromosomas se desenrollan nuevamente dentro de la cromatina. Ocurre la citocinesis (proceso paralelo en el que se separa la membrana celular en las células animales o la formación de esta en las células vegetales, finalizando con la creación de dos células hijas). Después suele ocurrir la intercinesis, parecido a una segunda interfase, pero no es una interfase verdadera, ya que no ocurre ninguna réplica del ADN. Este proceso es breve en todos los organismos, pero en algunos generalmente no ocurre.
[editar] Meiosis II
[editar] Profase II
Profase Temprana II
Comienza a desaparecer la envoltura nuclear y el nucleolo. Se hacen evidentes largos cuerpos filamentosos de cromatina, y comienzan a condensarse como cromosomas visibles.
Profase Tardía II
Los cromosomas continúan acortándose y engrosándose. Se forma el huso entre los centríolos, que se han desplazado a los polos de la célula.
[editar] Metafase II
Las fibras del huso se unen a los cinetocóros de los cromosomas. Éstos últimos se alinean a lo largo del plano ecuatorial de la célula. La primera y segunda metafase pueden distinguirse con facilidad, en la metafase I las cromatidas se disponen en haces de cuatro (tétrada) y en la metafase II lo hacen en grupos de dos (como en la metafase mitótica). Esto no es siempre tan evidente en las células vivas.
[editar] Anafase II
Las cromátidas se separan en sus centrómeros, y un juego de cromosomas se desplaza hacia cada polo. Durante la Anafase II las cromatidas, unidas a fibras del huso en sus cinetocóros, se separan y se desplazan a polos opuestos, como lo hacen en la anafase mitótica. Como en la mitosis, cada cromátida se denomina ahora cromosoma.
[editar] Telofase II
En la telofase II hay un miembro de cada par homologo en cada polo. Cada uno es un cromosoma no duplicado. Se reensamblan las envolturas nucleares, desaparece el huso acromático, los cromosomas se alargan en forma gradual para formar hilos de cromatina, y ocurre la citocinesis. Los acontecimientos de la profase se invierten al formarse de nuevo los nucleolos, y la división celular se completa cuando la citocinesis ha producidos dos células hijas. Las dos divisiones sucesivas producen cuatro núcleos haploide, cada uno con un cromosoma de cada tipo. Cada célula resultante haploide tiene una combinación de genes distinta. Esta variación genética tiene dos fuentes: 1 – Durante la meiosis, los cromosomas maternos y paternos se barajan, de modo que cada uno de cada par se distribuye al azar en los polos de la anafase I. 2 - se intercambian segmentos de ADN entre los homólogos paternos y maternos durante el entrecruzamiento.
jueves, 3 de diciembre de 2009
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario